BikeCommuters.com

Tag Archive: bicycle commute

The struggling cyclist.

Before I explain where I am let me mention where I came from.
I was always an outsider to sports. I had the determination and heart but I never had the raw skill. In golf they use the term L.O.F.T. Google it . Baseball, football, soccer, whatever, I was not really very good. I came into cycling after an injury. It was meant to be rehab for my back. That lead to the idea of commuting. Well, what it would lead to  was an obsession. At my lowest point I was fighting multiple addictions and cycling was what kept me going the streight path. I began racing and riding daily. I would race for a few years for a few teams and even for myself (unattached) when I lacked the fitness to race for a team .

Fast forward 10 years, I’m now married, a father of 3, and I have a dog to boot. In many ways I have what I want. I still have the drive to go out and test myself when I’m riding but there are many weeks that I just can’t ride, some weeks I’m just too tired, and yet others I’m not willing to make the sacrifice to get a ride in.  The fire is still there but the time/motivation/will is at times lacking. I set goals but get confronted with realities. Sure I could ride Saturday but one son has practice and the other has a soccer game. Did I mention my two-year old? So my choices are 4am ride or no ride. I made my choice before I typed it.

I don’t think I’m alone in my position nor do I think I need a small violin playing “sad romance”. What I need is a spark, something to convince myself to ride when it’s difficult to get going . As it turned out that spark that made me want to ride was a ride. That and something I heard on a podcast, something about second degree fun. It’s fun, just not from the idea or start. Like a climb, not really fun as a idea but as you get to the top, you can look back at the climb as a good time. Albeit a miserable, painful, good time .

So what keeps you going? Do you ever need a break or time to miss riding? Are you the type of rider who just wishes they had more time to ride? Let me know as that’s one of my motivations (I love hearing about others passion to ride).

Wanna race?

And it starts like most races do with a little hesitation, some trepidation, and a lot of anticipation. I roll out and set a steady tempo. I know my fitness is not where it used to be so I decide that a long range attack allá Contador is the way to go. I’m receiving information and it’s telling me I have a 30 second gap. I’m holding steady pushing about 20 miles per hour. I have some luck on my side and I have not had too many reasons to slow down. As I’m approaching the first climb, my first true test, my breakaway has gained me 2 minutes.

The climb shines light on the cracks in my foundation. I’m coming undone and I’m starting to Pedal in squares. The 2 mile climb is pushing my heart rate to 190 beats per minute, I’m bleeding time and fading fast. This climb that tops out at 7% and has taken my two-minute lead down to one minute. In the last mile of climbing I’ve fallen apart and this climb has taken its toll and although the major climb is over there is still more climbing to be done.

I’m feeling confident that I can get some of the time back on the upcoming rolling section. The problem is that this section is much less rolling then I remembered it. The next half mile has not a single negative grade and an average grade of 3%. I begin to lose more time and when I reach the two-thirds marker I’m only 20 seconds ahead. Those 20 seconds dissolve into zero, zero grows to a negative. My second best effort on this section is still about 1mph too slow.  I’m now 20 seconds behind, I’ve been caught, and I don’t have much left in the tank.

My strategy might seem to have failed me but I’m exactly where I want to be. I limp up the rest of the climb and utilize one of my best skills. The descent is my playground. I slowly see my deficit disappear and I even make up a few seconds. In my aerodynamic tuck I’m able to gain one minute and 30 seconds as I turn right, right into the last real climb. From here Colima is only 0.3 miles but with an average grade of over 6%, it can do some damage.  This climb is no test, this climb is a deal-breaker, make or break, win or lose.

My 1 minute and 30 second Advantage disappears yet again I get out of saddle I give it everything I have left to no avail. I’m riding like a man possessed but I’m two minutes behind. In 2 minutes I’ve lost 2 minutes. My lungs feel like raisins, I can feel the burn down my esophagus, my legs are begging me to stop, I consider sitting up. But for every climb there is a descent, so I hold my pace steady and continue up the climb. 2 minutes and 15 seconds is what I have to make up on a 2 mile descent.

I rearranged myself about 3 times trying to find an aerodynamic position I can hold for the entirety of the Hill. Colima Road flattens out and it’s now up to my legs pushing at times 28 miles per hour, holding my threshold as long as I can. I look down and realize I’m 3 minutes ahead. All that is left is to maintain my lead. I want to do more than maintain though, so I push each pedal as hard as I can for the remaining 2 miles. Little by little I’m gaining time, three minutes turns into four, four minutes balloons to 5, and by the time I’m at the finish my lead would tell a different story than my body. I’m a wreck but I’m feeling like an accomplished wreck.

My first race in sometime was not against a Peloton or a friend, it was against myself via my virtual partner on my Garmin 520. I had no idea that this is going to be so much fun, so competitive, and so inspiring. At the time I didn’t think twice I just thought “oh look what I can do” with my Garmin. It seems like my commute has found yet another way to keep my interest.

Watch the video

Bike Racks Are Becoming Rare…

In the immediate area where I live, I’ve started noticing that there are less and less bicycle racks than ever before. It seemed like every grocery store had them and each shopping center used to have a designated area for them. But not I’m venturing out more for casual rides and to find places to eat/drink, I’m having a harder time finding a good place to lock my bike.

Take for example my trip to the grocery store, they used to have a HUGE bike rack. But now it’s gone. So I had to find some metal railing to lock my bike against. What’s interesting is, if I go do downtown Fullerton, the seems to be more of an acceptance to bicycles there. In fact there are actually quite a bit of 2-bike racks peppered around the area. I guess I just don’t get why in some areas, there are racks while others it’s absent.

To Helmet or Not to Helmet; that is the Question.

Actually, it’s not that simple. The issue of bicycle helmet use and practice is complex. That probably explains why no one agrees on it and also why we will argue about this until the end of time. Admittedly, I am a bicycle helmet advocate. I use one myself. As a physician, I see many head injuries from bicycle accidents; many without helmets, some with. And as I researched for this article, I started appreciating the complexities of bicycle helmet use.

What follows is an overview of the main points of contention that I have encountered in my readings. It is neither an argument for or against helmets. As a free thinking adult, you must decide for yourself, unless you live in a helmet-mandatory region.

thumb_main_to_be_or_not_to_be

Theoretical versus Real World Benefit

From a theoretical standpoint, helmets make sense. Much like an airbag for your head, a helmet reduces the extent of deceleration that your head and brain experience when an impact occurs.

Force = mass x acceleration.

The lower the magnitude of acceleration (or deceleration), the lower the force experienced, meaning less injury. There are standards for designing helmets, which are met through testing. These include drop tests involving blunt impact as well as penetration tests with sharp objects. These tests are often performed at different temperatures, in different moisture conditions etc, in an attempt to simulate reality. But of course, these are simulations.

Consider the following when a bicycle accident occurs in the real world:
1. Condition of the helmet (is it already broken, is it the right size, fit)
2. The way a helmet is worn
3. The speed at which a person is riding
4. The type of object and speed of the object into which the bicyclist is colliding (an 18 wheeler going 40 miles an hour vs. a wooden fence)
5. What parts of the body gets injured in the accident (a helmet is not going to protect the cyclist from chest or abdominal trauma).

badhelmet2

These are just some of the issues that can make a huge difference when we are considering the question of whether or not bicycle helmets translate into real-world benefit from head injury.

As a thought experiment, let’s consider two worlds, A and B, both in which everyone correctly wore new helmets and were 100% compliant with their use.

However, in world A, 90% of bicycle accidents involved collisions with 18-wheelers travelling an average of 80 MPH. I can almost guarantee you that a bicycle helmet will make zero difference in preventing head injuries and fatality; with or without a helmet, chances are you will have a devastating head injury if you are involved in such an accident.

Compare that to world B where there are no motorized vehicles, the roads are soft and cushioned, and no one rode above 8mph. Helmets would probably make minimal difference in this world as well; with or without a helmet, chances are you will have no head injury if you are involved in an accident.

Somewhere in between these two extremes is a “sweet spot” where helmet use makes a significant difference in preventing head injury. Where that sweet spot lies on the spectrum of bicycle accident severity remains elusive.

How-to-Wear-a-Bike-Helmet

Show Me the Evidence

So on that note, can we definitively prove or disprove that wearing helmets prevents significant head injury in the world we live in today? The short answer is “probably not, and probably never.” Why? Because we cannot run randomized controlled trials (RCTs) to assess whether or not helmets can statistically significantly lower head injury rates.

Briefly, a RCT is an experiment commonly used in assessing new interventions (e.g. medications) to treat specific diseases. Basically, people with a certain disease are randomly assigned to one of 2 groups: one group that takes the new medicine, and one group that gets a “control” treatment or placebo. At the end of the trial, the outcomes are assessed, i.e. how many in each group are cured. Statistics are then run to see whether or not the new medicine significantly cures more people than the placebo.

To run a RCT on bicycle helmets would be unethical.[i] Such a trial would involve randomly assigning people into two groups, one with helmets, one without, then making these people ride their bicycles into planned collisions. Outcomes would then be assessed, i.e. how many in each group develop head injury, how many end up in comas, how many people end up dead.

Instead of RCTs, what we have are case-controlled studies (a type of retrospective study). Basically, the study looks at cases (people with head injuries following bicycle accidents) and controls (people without head injuries following bicycle accidents).  The cases and controls are then compared based on the exposure, in this case, helmet use. The study then calculates an odds ratio comparing the odds that a helmeted rider ends up as a case versus a control. It is important to note that such a study can only suggest causality and never prove it.

On this note, a recent Cochrane review [ii] found 5 well designed case-control studies and analyzed the data from these 5 studies. They found that helmets provide a 63 to 88% reduction in the odds of head, brain, and severe brain injury for all ages of bicyclists. Helmets provided equal levels of protection for crashes involving motor vehicles (69%) and crashes from all other causes (68%). Injuries to the upper and mid facial areas were reduced 65%.

The main problem with retrospective studies is that an innumerable number of confounding factors can mess with the data, which is why these studies can never prove. For example, one confounding factor might be that people who wear helmets just tend to be more careful and less reckless compared to those who chose not to wear helmets. Therefore, by being more careful, the helmet wearers may have been less prone to accidents in general, or at least less prone to accidents that required a trip to the ER.

 prove-it

Mandatory Helmet Laws

Currently, mandatory helmet laws are enacted for people of all ages in Australia, New Zealand, Finland, several states in the U.S [iii]., and Canada, while the Netherlands only enforces a helmet law for competitive cyclists [iv].

Mandatory helmet laws are far more prevalent for minors in the U.S. and around the world, and for the most part this issue is not as contentious, perhaps because there is more powerful evidence to suggest greater benefit for minors than helmet use in adults.[v] Furthermore, some policy makers would argue that minors may not yet have the ability to make an informed decision about the issue.[vi]

It is the debate over these laws that is particularly engaging because it not only involves the argument of the utility of the helmet itself but also of the encroachment on freedom and liberty.

In a 2012 editorial in the Journal of Medical Ethics, Hooper and Spicer[vii], two authors from the UK, argue against the idea of a mandatory helmet law in the UK. Salient points in their article include their cited figure that overall bicycle related death and injury in the UK in 2008 made up a small fraction of the total number of bicycle related casualties (104 deaths and 2606 injuries out of 17,064 reported cycling accidents). As such, a nationwide mandatory helmet law might end up costing more to implement than would benefit the UK public at large.

Another point that Hooper and Spicer bring up is whether or not a mandatory helmet law actually deters people from cycling, whether due to the financial burden of having to purchase an additional piece of equipment, or the sheer inconvenience of having to wear it before each ride. They mention this point in counter to a 2008 Cochrane review, [viii] which found that mandatory helmet legislation did increase the use of cycle helmets and decrease the head injury rate after implementation. Hooper and Spicer argue that the studies included in this Cochrane review did not look at the total number of cyclists on the road after the mandatory bicycle law was implemented.[ix] Indeed it is conceivable that helmet laws may in fact reduce the total number of cyclists on the road, thereby decreasing the overall frequency of bicycling accidents. This is a point that the Cochrane review article also concedes.

Australia potentially illustrates this phenomenon of lower numbers of cyclists after mandatory helmet laws. When helmet laws were passed in the early 1990s, cycling trips in fact decreased by 30-40% overall. Furthermore, a recent survey from University of Sydney found 23% of Sydney adults would ride more if helmets were optional, which is a significant number given that only about 15-20 per cent of Australians ride regularly.[x]

Interestingly, a “safety in numbers” trend has also been shown such that the injury rates for each cyclist in a given area is lower when there are more cyclists.[xi] This might be because with more cyclists on the road, drivers will be more accustomed to driving safely with cyclists. So decreasing the number of cyclists on the road, even if because of a mandatory helmet law, might end up hurting us in the long run.

strength-in-numbers

The Other Effects of Helmets

The effects of helmets may not just be physical, but also psychological. It has been proposed that drivers may be more cavalier in their driving habits when they drive around helmeted cyclists[xii], one explanation being the faulty logic that a helmeted cyclist is more protected, therefore drivers don’t have to be as careful around them. On the flipside, a cyclist might actually feel that with a helmet on, he/ she is more protected and so is more prone to cavalier cycling habits [xiii].

Other Factors as Important

A recent 2014 paper from Denmark[xiv] reviewed such factors, and determined the most significant ones that are associated with bicyclist injury. Being that Denmark is certainly one of the leading nations in the international cycling community, I found the findings of this paper particularly interesting. However, as mentioned above, this is also case controlled, so it doesn’t prove anything; it just reveals associations. Furthermore, being that it looked at data from Denmark, the noted associations may or may not correlate with other parts of the world. The following is the list of factors listed in this paper:

Age: younger cyclists had a higher probability of lower injury severity. At age 40 years or older, riders had a higher proportion of higher severity injuries, while elderly cyclists had a spike in high severity injuries and fatalities. My take on this is that the older you get, the less hits your body can take.

Intoxication: The study looked at four categories of riders: i. Sober with helmet, ii. Sober without helmet, iii. Drunk with helmet, iv. Drunk without helmet. They found that sober people wearing helmets had 7-10% lower association of severe injuries and fatalities compared to sober people without helmets. Interestingly, compared to sober riders without helmets, drunk helmeted riders had 60% increased odds of death, while drunk riders without helmets had a 457% increased association of death.

Collision partner: In decreasing order of injury severity, collisions with trucks were associated with greatest injury severity, followed by cars, followed by mopeds and other cyclists. Interestingly, drunk drivers were not significantly associated with increased cyclist injury severity possibly because there were so few cases.

Movement conflicts (Note that people drive on the right side in Denmark): In decreasing order of injury severity, collisions involving cyclist going straight and the collision partner turning left had the highest injury severity, followed by both parties going straight, followed by cyclist going straight and collision partner turning right, followed by cyclist moving straight and collision partner not moving.

Infrastructure: Higher speed limits were associated with higher injury severity. Bike lanes were associated with decreased cyclist fatalities, but interestingly were not associated with decreased minor or severe injuries. Multi-lane roads were associated with 10-15% increased association of severe injuries and fatalities compared to single-lane roads.

Environment: Slippery roads were associated with a 21% increase association with light cyclist injuries and a 48% increase in cyclist fatalities compared to dry roads. Darkness had a 10–13% lower association with severe and fatal cyclist injuries, interestingly enough. No significant difference was found between the effect of darkness and artificial illumination.

bicycle-accident-flooded-road

Conclusions

I haven’t given you any proof of anything. But I would still recommend a helmet. They can be pretty inexpensive; and even the most expensive ones for me have costed $90 each. I usually keep a helmet for a good 3-4 years, by which point one of the straps breaks, translating to $20-$30 a year. Not unreasonable. For me, I have already formed a habit of it, so it’s easy to continue wearing one. If you live in an area without a mandatory helmet law, then it’s your decision.

In terms of other factors, try to ride in quiet areas with low speed limits if you are starting out and unsure of yourself on the saddle. Be wary when riding in wet and slippery conditions. Be wary of cars turning left into you as you ride through intersections (for right sided driving areas).

Oh yeah… and don’t ride drunk.

Do good and ride well.



[i] Yilmaz et al. Comparison of the serious injury pattern of adult bicyclists, between South-West Netherlands and the State of Victoria, Australia 2001–2009. Injury, Int. J. Care Injured 44 (2013) 848–854.

[ii] Thompson et al. Helmets for preventing head and facial injuries in bicyclists (Review). Cochrane Database of Systematic Reviews 1999, Issue 4. Art. No.: CD001855. DOI: 10.1002/14651858.CD001855.

[iv] Yilmaz et al. Comparison of the serious injury pattern of adult bicyclists, between South-West Netherlands and the State of Victoria, Australia 2001–2009. Injury, Int. J. Care Injured 44 (2013) 848–854.

[v] British Medical Association. Promoting Safe Cycling. London: British Medical Association, 2010.

[vi] Spicer et al. Liberty or death; don’t tread on me. J Med Ethics 2012;38:338e341. doi:10.1136/medethics-2011.

[vii] Spicer et al. Liberty or death; don’t tread on me. J Med Ethics 2012;38:338e341. doi:10.1136/medethics-2011.

[viii] Macpherson A, Spinks A. Bicycle helmet legislation for the uptake of helmet use and prevention of head injuries (Review). Cochrane Database Syst Rev 2008;(3): CD005401.

[ix] Macpherson A, Spinks A. Bicycle helmet legislation for the uptake of helmet use and prevention of head injuries (Review). Cochrane Database Syst Rev 2008;(3): CD005401.

[xi] Jacobsen PL. Safety in numbers: more walkers and bicyclists, safer walking and bicycling. Inj Prev 2003;9:205-9.

[xii] Spicer et al. Liberty or death; don’t tread on me. J Med Ethics 2012;38:338e341. doi:10.1136/medethics-2011.

[xiii] Hilman M. Cycle Helmets: The Case for and Against Them. London: Policy Studies Institute, 1993.

[xiv] Sigal Kaplan, Konstantinos Vavatsoulas, Carlo Giacomo Prato Aggravating andmitigating factors associated with cyclist injury severity in Denmark. Journal of Safety Research 50 (2014) 75–82.

Munich By Bike

 

Munich is one of the most beautiful, bike-friendly cities in Germany! Famous for its Oktoberfest where beer and girdles overflow, the place doesn’t get nearly enough the credit it deserves for its cycling routes and infrastructure. If you like getting on your bike and exploring, weekend breaks to Munich are a necessary and thoroughly enjoyable pastime. Here are a few ideas which will help you discover a side of Bavaria’s capital besides pale ale and leather shorts.
munich
If you don’t mind biking in urban environments, the downtown area is a great place to start your explorations. Try a “Tour of the Tors”! “Tor” is the German word for “gate” (oh, and for “goal” in soccer”!), and Munich’s old town had a good number of those. They’re all within a kilometer of each other, sometimes less, and if you go through them in succession, you’ll circumscribe the area behind the old fortification walls.

Keep in mind that some of the old gates no longer exist, but Sendlinger Tor, Karlstor, Türkentor, Siegestor, and Isartor still keep you running along the historically correct perimeter. In May 2014, an art project was launched to remind locals and visitors of the “lost gates” — the ones which wars and old age took down. You might come across curious art installations where you can stop by for a minute and read up on the missing pieces in Munich’s gate puzzle.

After a good time downtown, there are few things better than resting your eyes with some nature gazing. As industrial and rich as it is, Munich offers parks with sprawling fields and meandering bike and walking paths. The most famous destination is the English Garden, a green symphony of nature with 78 kilometers (yup, Europe is metric!) of biking routes. You can enjoy the sun or slip into the forested paths. Make your way to the Chinese Tower, one of Munich’s most legendary beer gardens, and have a well-earned break.

Another terrific biking destination is the Olympia Park not too far from the city center. A beautiful bridge with glass railings brings you to the start of your tour, and you can put your stamina to the test with several gentle slopes on your way to the park’s heart: the Olympic Stadium and the BMW Arena and Museum nearby. This route offers mostly sunny tracks and open spaces, with some culture and fun on the side for when you want to rest. A classic Munich bike tour, through and through!

olympia park

Munich is something of a cyclist’s paradise. You can get in some serious cycling while still cramming in the chance to experience culture.

 

Review: Dorcy Hawkeye Bike Lights

I thought I was doing just fine with my current bike light setup—yes, my front light is secured with electrical tape and it needs to be encouraged to turn on with a good smack or two. And yes, rear lights mysteriously disappear en route between my apartment and the office on a regular basis. Ok, who am I kidding, I need a new bike light system. Luckily for me, I’ve been tasked with testing out a couple different options. First up, Dorcy Hawkeye lights.

1-Dorcy Hawkeye Light

Dorcy doesn’t mess around with lights. The company’s products range from personal flashlights and headlamps to heavy duty spotlights and signal wands (for directing traffic). The Dorcy Hawkeye LED bike lights promise to pack a punch with the front light boasting 200 lumens, guaranteeing to light the path 200 meters down the road and to be seen from even further away—same goes for the rear light.

2-Dorcy lights in package

The Dorcy LED bike light  is not a dainty addition at nearly half a pound including three AA batteries. Even with the option of using rechargeable batteries, I’m not a big fan of battery powered devices, if only because I never seem to have extra batteries when I need them most.

3-Dorcy light out of the package

The battery cartridge has a satisfying barrel-like design, reminiscent of a revolver’s bullet chamber. Not sure why I like that so much, but I do. Though it doesn’t help the overall weight, which seems a bit hefty to me.

5. Dorcy light size

The light itself is much larger than most, nearly five inches long. But this is no ordinary bicycle light, my friends. Thanks to a patented quick release feature, the “durable aerospace-grade aluminum alloy, corrosion resistant” light chamber pops out of the bike clamp, transforming into a handheld flashlight. Snazzy.

With the rubber-padded bracket attachment, the light stayed secured to my handle bars with no obnoxious rattling (which is just the worst) or movement up and down. Dorcy claims that the bracket will fit any bike on the North American market, so I’m guessing this light will fit just as securely on nearly any bike.

4-Dorcy light on roy

The Dorcy Hawkeye features a wide-angle, rectangular light beam rather than a traditional focused beam, which helps to illuminate the entire road ahead while limiting (unnecessary) spread of light upwards. They also claim that this feature “will not blind pedestrians.” I tested this assertion by making my friend, Sarah stand still while I rode toward her, light blaring. Sarah still seemed to cringe way from the light, but once I rode closer, the beam did indeed remain below her eyes.

Dorcy

On to the rear light: the Dorcy Hawkeye Tail Light features three super high brightness LEDs that can be seen from 200 meters away. Like the front light, the rear light’s mounting clamp is tool-free and adjusts easily to fit snuggly on any 24 – 32 mm diameter seat post. Plus, the patented bracket adjusts for a horizontal or vertical orientation.

6-Dorcy rear light

Personally, I appreciated how the adjustable pin and padded clamp allowed me to really crank the bracket on for maximum security. No more losing a rear light on a packed train car or bumpy road! (Notice the velcro remains of a previous light still clinging to my seat post?)

7-Dorcy rear light mounted

For my first ride with these lights, I ventured out through Golden Gate Park to catch the sunset and make sure that it was good and dark for my return ride.

8-Dorcy Light Sunset

Both the rear and front lights have just two setting: steady beam and flashing. As promised, I felt like my lights could be seen from blocks and blocks away. Seriously, I was lighting up reflective street signs as far as I could see (maybe five or six blocks). Also, the front light has two slits on either side, allowing light to filter out and illuminate the area right and left of the rider. While this is a bonus for visibility, I found it to be distracting with the light shining in my eyes.

10-Dorcy light at the beach

For everyday commuting, the front light is a bit large and hefty for my tastes; on the other hand, I would definitely choose the Dorcy Hawkeye for my pre-sunrise rides through poorly lit backroads. Not only would I be well visible to traffic, but my path would also be lit clear as day.

The Dorcy Hawkeye LED Personal Light front bike light retails for $55.00 and can be purchased directly from Dorcy.com—same goes for the LED Bicycle Tail Light, which retails for about $13.99.

Please click here to read our review disclaimer as required by the Federal Trade Commission.

Bike safety to the extreme: Laser lights, vibrating handlebars and more

This morning I was zipping down a six block descent on my way to work, eyeing a sporty black car that was creeping suspiciously down the hill. As a good defensive bicyclist, I slowed my roll, covering the brakes as I gained on the car and an approaching intersection. The light was green; I was headed straight through the intersection and so was the car until it made an unexpected, unsignaled right turn, cutting me off. Luckily, I had slowed significantly and changed my trajectory, turning right alongside the car. Not sure if the driver even noticed me.

I was lucky. Sometimes defensive biking isn’t enough to avoid a collision.

This was not my first near miss, not even the first one of the week, so when a friend told me about the BLAZE Laserlight, my first thought was, “I could definitely use a little green bicycle fairy.” Because that’s what the BLAZE light is: a high-powered LED that projects a green bicycle shape onto the roadway about 16 feet in front of a cyclist, warning drivers of an approaching rider. Hopefully, the green bike will alert space-cadet drivers and make cyclists less vulnerable to blind spots and other potential dangers.

A little green friend.

It’s true, BLAZE Laserlight is just the newest iteration of an idea that’s been around for several years—check out these laser beam bike buffers—but I have yet to see this concept in action on the street. Maybe it seems like overkill to have little green bikes (or laser beams) announcing a cyclist’s every turn.

On the other hand, maybe laser beams are just the beginning. A group of engineering students at Northeastern have taken bike safety to the extreme, creating the Interactive Bicyclist Accident Prevention System (iBAPS). The “smart bike” prototype incorporates a plethora of safety features.

Extreme safety measures.

Smarter than your average cyclist? The iBAPS features:

  • Sensors to detect cars impinging on a cyclists space
  • Laser beams (of course) that project a 3-foot wide virtual bike lane
  • If a car comes too close, the bike “emits a loud message, telling drivers to move further away.” (I think we’re all wondering the same thing, what is this message and is it customizable?)
  • When approaching an intersection at high speed, the handlebars vibrate as a warning to slow down. (Frightening.)
  • Using Bluetooth tech, the bike can sync up with a rider’s smartphone leading to all kinds of excessive data extrapolation. Like tracking riding trends to inform the biker how likely it is that their riding behavior will lead to a crash.
  • With the smartphone GPS, the bike can vibrate the handlebars, alerting the rider to make the correct turns to reach a destination. (I just can’t get over the vibrating thing. It would scare the crap outta me.)
  • As cars get smarter too, eventually the bike will be able to communicate with vehicles on the road. (Where’s  my self-riding bicycle, Google?)

Read more about the iBAPS smart bike from the Boston.com.

All these features make my measly helmet & flashing lights seem antiquated. I’m all for bike safety measures and, although some of these seem a bit extreme, to ensure I arrive to my destination unscathed, nothing may be too extreme.

How far would you go to ensure your safety while bike commuting? Is it possible that the iBAPS is missing any features?

 

Merry Xmas Bike Commuters: DIY Bike Rack Just for YOU!

My office has a plethora of bikes that live full– or part–time in the warehouse. This small fleet of communal cruisers and commuter bicycles needed an organized home rather than randomly strewn about the room.

Luckily, we have a couple of industrious fellas who took on the task of building a bike rack with limited funds, two wooden pallets, and an hour to spare. Now we’re sharing with you the step-by-step guide on how to build your own hanging bike rack.

Build Your Own Bike Rack

WHAT YOU’LL NEED:

Materials

  • Two ~6’ tall wooden pallets (or five 6′ 2x4s, plus one 8′ 1×6 and one 8′ 1×4)
  • Wood screws (We used Grabber screws #8 x 2.5” and #9 x 3”)
  • Bicycle or storage hooks

Tools

  • Power drill
  • Power saw
  • Hammer

BYOBR Equipment

Building buddy!
Grab a friend or two. The building will be easier, safer, and more fun with a friend.

BYOBR Parker & Will

STEP ONE
Carefully disassemble the two pallets and remove all nails––this is where the hammer comes in handy. Group the pallet lumber into similarly sized pieces. All the longest, sturdiest pieces (the 2x4s) will form the frame of the bike rack.

BYOBR Wood Pallet Parts

BYOBR Pallet Pieces

STEP TWO
Construct the frame using five of the 2x4s. You may need to trim some of the lumber to size as Will & Parker did for our bike rack.

BYOBR Frame

Secure each corner with two long wood screws.

BYOBR Building Frame

The bottom beam usually needs to be the flattest, least likely to wobble; however, the bottom beam on the rack built by Parker & Will was warped. Gotta work with what you have.

STEP THREE
You should now have a large rectangle. Place the third and remaining 2×4 directly in the middle between the two outer columns. You can see how carefully Will measures the distance using the highly-scientific “counting-his-steps” method.

BYOBR Measuring Frame copy

You may need to trim the lumber to size. Secure the middle column with two screws at either end.

BYOBR Building Frame 2

BYOBR Frame Raised

STEP FOUR
Give this rack some feet to stand on! Secure a 1×6 to the base of the outer columns with four screws each.

BYOBR Adding Feet

BYOBR Adding Feet 2

STEP FIVE
Bracer. Create a stabilizer for each foot––’cause you know triangles are the strongest shape (I learned that in 3rd Grade).

BYOBR Feet Added

Parker identified the angle for the cut by holding the 1×6 in place and marking with his favorite mechanical pencil. Super sophisticated stuff here.

BYOBR Measuring Cuts

Trim each stabilizing piece along the identified angles, so that the edges are flush with the frame.

BYOBR Preparing Cuts

Secure each brace with a couple screws.

BYOBR Adding Stabilizers

BYOBR Stabilizers

STEP SIX
More stabilizers! Add a small 1×4 stabilizer at each corner of frame for added stability. That’s four in total, if you’re counting.

BYOBR Top Stabilizers

Measure and cut the smaller stabilizers using the same method in Step Five. IMPORTANT: Don’t place your stabilizers too far into the frame or they may obstruct how your bikes hang. Secure with the smaller length screws.

BYOBR Parker Drilling

Lookin’ good! You’re almost there.

STEP SEVEN
Evenly space four bicycle hooks into the frame. Leave plenty of elbowroom for your bikes’ handlebars. Hint: it helps if you drill a starter hole before screwing the hooks into place. (Look at the teamwork happening!)

BYOBR Will & Parker Adding Hooks

STEP EIGHT
Hang up yo’ bikes! Stand back and admire a job well (and economically) done.

BYOBR Will hanging up bikes

BYOBR Completed Bike Rack

BYOBR Completed Bike Rack 2